Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 1 entries in the Bibliography.


Showing entries from 1 through 1


2020

Study of spatiotemporal development of global distribution of magnetospheric ELF/VLF waves using ground-based and satellite observations, and RAM-SCB simulations, for the March and November 2017 storms

Magnetospheric ELF/VLF waves have an important role in the acceleration and loss of energetic electrons in the magnetosphere through wave-particle interaction. It is necessary to understand the spatiotemporal development of magnetospheric ELF/VLF waves to quantitatively estimate this effect of wave-particle interaction, a global process not yet well understood. We investigated spatiotemporal development of magnetospheric ELF/VLF waves using 6 PWING ground-based stations at subauroral latitudes, ERG and RBSP satellites, POES/MetOp satellites, and the RAM-SCB model, focusing on the March and November 2017 storms driven by corotating interaction regions in the solar wind. Our results show that the ELF/VLF waves are enhanced over a longitudinal extent from midnight to morning and dayside associated with substorm electron injections. In the main to early storm recovery phase, we observe continuous ELF/VLF waves from ∼0 to ∼12 MLT in the dawn sector. This wide extent seems to be caused by frequent occurrence of substorms. The wave region expands eastward in association with the drift of source electrons injected by substorms from the nightside. We also observed dayside ELF/VLF wave enhancement, possibly driven by magnetospheric compression by solar wind, over an MLT extent of at least 5 hours. Ground observations tend not to observe ELF/VLF waves in the post-midnight sector, although other methods clearly show the existence of waves. This is possibly due to Landau damping of the waves, the absence of the plasma density duct structure, and/or enhanced auroral ionization of the ionosphere in the post-midnight sector.

Takeshita, Yuhei; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ozaki, Mitsunori; Kasahara, Yoshiya; Oyama, Shin-Ichiro; Connors, Martin; Manninen, Jyrki; Jordanova, Vania; Baishev, Dmitry; Oinats, Alexey; Kurkin, Vladimir;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028216

ELF/VLF wave; Arase; Van Allen Probes; PWING; RAM-SCB simulation; subauroral latitudes



  1